
Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 2
Task: kitchen

Version: en-1.0

Tom’s Kitchen Spoiler

Subtask 1 was intended to permit simple case-analysis based solutions.

Subtask 2 was intended to permit brute force search solutions.

Subtask 3 was a reduction to a standard Dynamic Programming problem (commonly stated as:
you have certain coins, find if you can pay exactly X amount of money with them).

Subtask 4 was intended to permit task-specific but suboptimal Dynamic Programming solutions.

The full solution uses Dynamic Programming. Let us mentally reorder the hours spent on each
meal such that for the first K hours, all chefs are different. This way we can visualize these K
hours forming an N × K ”diversity box”, with all ”non-diverse hours” coming afterwards (as
shown in the figure above). Now let’s make the following observations:

1. Each chef can add at most 1 hour to any column of the ”diversity box”.

2. A chef j can fill the ”diversity box” by at most min(Bj , N).

3. In a correct solution ”diversity box” must be filled by an amount at least N ·K.

4. Suppose you have decided to hire chefs for a total of H hours. Then it’s optimal to
hire such set of chefs that the ”diversity box” is filled as much as possible (perhaps even
overfilled).

Now let D[c][h] be the maximum amount we can fill the ”diversity box” by picking a subset of
chefs 1, . . . , c such that they are hired for a total of h hours. Now let us notice that for the value
D[c][h] there are two possibilities:

1. The maximal subset contains chef c. Thus the other chefs in this subset form a maximal
solution for D[c − 1][h − Bc] (otherwise we could pick a better subset). Thus D[c][h] =
D[c− 1][h−Bc] + min(Bc, N).

2. The maximal subset doesn’t contain chef c. Thus this subset also forms a maximal solution
for D[c − 1][h] (a better solution to D[c − 1][h] would contradict the maximality of this
subset). Thus D[c][h] = D[c− 1][h].

Published under the CC BY-SA 4.0 license 1/2



Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 2
Task: kitchen

Version: en-1.0

Now we simply need to consider the two cases and see which gives us a better solution. Thus
D[c][h] = max(D[c−1][h−Bc]+min(Bc, N), D[c−1][h]). For performing the dynamic program-
ming computation, we can initialize D[0][0] to 0 and every other D[i][j] to ∞. Note that once
we have computed D[c][∗] we don’t care about D[c− 1][∗] anymore, so we can optimize memory
consumption. The answer will be minimum non-negative h−

∑
iAi such that D[N ][h] ≥ N ·K.

import array
N = 300
n,m,k = [int(x) for x in input().split()]
a = [int(x) for x in input().split()]
b = [int(x) for x in input().split()]
supply = array.array(’i’, [−N∗N for i in range(N∗N+1)])
supply[0] = 0;
def solve():

if(min(a) < k):
return ’Impossible’

bsum = 0
for x in b:

bsum += x
for i in range(bsum,−1,−1):

supply[i+x] = max(supply[i+x],supply[i]+min(x,n))
for i in range(sum(a),N∗N+1):

if(supply[i] >= n∗k):
return i−sum(a)

return ’Impossible’
print(solve())

Credits

• Task: Bernhard Linn Hilmarsson (Iceland)

• Solutions and tests: Oliver-Matis Lill, Andres Unt (Estonia)

Published under the CC BY-SA 4.0 license 2/2


