
Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 2
Task: necklace
Version: en-1.0

Necklace Spoiler

Let’s represent the strings given to the girls by S and T . A pair of matching necklaces can
be found as concaternation of strings A and B such that AB is a substring of S and BA is a
substring of T .

You might need to reverse T first. This converts the following case into the previous one.

2-approximation. As each necklace match consist of two substring matches, at least one of
them has to be no shorter than half the length of the necklace. Let LSS(i, j) be the length of the
common suffix of S[: i] and T [: j]. Depending on if S[i] = T [j], LSS(i + 1, j + 1) is LSS(i, j) + 1
or 0. To find the longest common substring, we try all possible d = j − i and for each loop over
k in increasing order calculating LSS(k + 1, k + 1 + d) from LSS(k, k + d). This takes O(N2)
time, O(1) extra memory.

O(N4) and O(N3). As we have seen, a necklace match can be decomposed into two substring
matches by cutting the substrings that give the necklace match at some points. For each possible
pair of cut points (i, j) (all pairs of indexes of S and T ), we’ll find the longest necklace that has
these cut points. To find it, we can maximize length of the halves of the necklace separately. Let
LSP (i, j) be the length of longest suffix of S[: i], that is a prefix of T [j :]. Similarly let LPS(i, j)
be the length of longest prefix of S[i :] that is a suffix of T [: j]. The longest necklace with cut
points (i, j) has length LSP (i, j) + LPS(i, j). To find LSP (i, j) we can check all lengths naively
in O(N2), giving an O(N4) solution overall. Comparing equal length prefixes and suffixes with
a rolling polynomial hash gives an O(N3) solution overall.

Full DP solution. To get a faster solution, we need to find LSP (i, j) for many pairs of indexes
at once. To do this, we will use LSS(i, j). If LSS(i, j) = l then LSP (i, j−l) ≥ l, LSP (i, j−l+1) ≥
l − 1, etc. Passing the length from LSS(i, j) to LSP (i, j − l), LSP (i, j − l + 1), . . . , LSP (i, j − 1)
for all (i, j) is enough to calculate LSP . Doing this naively would take O(N3) time. We can
optimize it by doing LSP (i, j−LSS(i, j)) = max(LSP (i, j−LSS(i, j)), LSS(i, j)) for all (i, j) and
then LSP (i, j) = max(LSP (i, j), LSP (i, j − 1) − 1) for all (i, j). This gives an O(N2) solution.
To improve the memory usage to O(N) you need to analyze the DP transitions carefully.

Full randomized solution. Choose a pair of indexes randomly. Extend (i, j) to ([l1, r1), [l2, r2))
describing the longest substring match that (i, j) is part of. This takes time proportional to the
length of the substring match. If the longest common substring has length l, then it takes on
average N2

l attempts to find it. So, this is a randomized O(N2) solution to finding the longest
common substring.

To find necklaces, we’ll generate substring matches this way. For a match of length l, we’ll try
to extend it with strings of length up to l to get a necklace match. We can check all lengths
naively in O(l2), giving an O(lN2) solution. Using a rolling polynomial hash gives an O(N2)
solution. The memory usage is O(N). This solution is on average faster than the DP solution.

Credits

• Task: Jakub Radoszewski (Poland)

• Solutions and tests: Oliver Nisumaa, Andres Unt (Estonia)

Published under the CC BY-SA 4.0 license 1/1


