
Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 1
Task: valley

Version: en-1.0

Alpine valley Spoiler

Abridged problem statement. You are given a tree with N vertices, with a special exit
vertex E. Each edge has a positive weight. There are S special vertices, we call them shop
vertices. You are to answer Q queries of the following form: suppose we temporarily erase edge
I.

• Is it possible to reach vertex E from vertex R (without traversing I)?

• If not, how far is the closest shop vertex R (without traversing I)?

Subtask 1. (1 ≤ N,Q ≤ 100; the graph looks like this: ◦ − ◦ − ◦ − · · · − ◦)

Removing an edge (u, u + 1) will split the graph to two parts: those with indices 1 . . . u and
those with indices u + 1 . . . N . It should be easy to check whether E and R are on the same
“side”. If they are, the answer is escaped. Otherwise, it is fairly straightforward to iterate over
all shop vertices on the “side” of R and calculate distances to find the closest one.

Subtask 2. (1 ≤ N,Q ≤ 1000)

The simplest solution (and typically, insufficient) to any problem is to simply do what the
problem statement tells us to do, without giving it any more thought. This subtask can be
solved by doing exactly that.

Suppose a query (I,R) comes along. Then, we:

1. traverse the graph (pretending that the edge I does not exist) to calculate, for each vertex
v, the distance from R to v;

2. if the distance from R to E is not ∞, announce that it is possible to reach E from R;

3. otherwise, iterate over all shop vertices to find the one closest to R.

And this is done for all queries, separately.

Steps 2 and 3 should be straightforward to implement. There are many slightly different ways
to do step 1. What makes it simpler is the fact that in a tree, there is exactly one path (that
doesn’t repeat vertices) between any two vertices. Thus the distance from R to v (for any v) is
the length of that only path.

The idea is as follows. We know that the distance from R to R is 0. From this, we can calculate
the distance from R to its neighbours. Knowing the distance from R to its neighbours, we can
calculate the distance from R to those neighbours’ other neighbours. And so on. Formalizing
and implementing this gives us something like the following:

Published under the CC BY-SA 4.0 license 1/5



Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 1
Task: valley

Version: en-1.0

Algorithm 1: Breadth-first search to answer queries

queue← a first-in, first-out queue, initially empty
dist← an array, initially dist[v] =∞ for any v
add R to the back of queue
dist[R]← 0
while queue is not empty do

u← first element of queue
remove the first element from queue

for each edge (u, v) from u do
if we have not visited v and (u, v) 6= I then

add v to the back of queue
dist[v]← dist[u] + weight(u, v)

end

end

end

Here, weight(u, v) denotes the weight of the edge between u and v.

A practical note: the answer to the question can be up to 105 · 109 = 1014. Thus, using int (in
C++ and Java) will lead to overflow. Use long (in Java) or long long (in C++) instead.

Let’s calculate the complexity of this solution. In algorithm 1, we visit each vertex and each
edge at most once. Thus the complexity of step 1 is O(N). Steps 2 and 3 also take no more
than this. As such, we take O(N) time for each query, for a total complexity of O(NQ).

If we only had one query, this would be optimal. But, we are neglecting the fact that all those
queries take place on the same graph...

Subtask 3. (1 ≤ N,Q ≤ 100 000; all vertices are shop vertices)

From this point on, we consider our graph as a rooted tree, rooted at the exit vertex E. It might
look something like this:

E

a

b
c

õ

p

q

x

y

z

ä

ö ü

r

Published under the CC BY-SA 4.0 license 2/5



Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 1
Task: valley

Version: en-1.0

Among the neighbours of a vertex, we distinguish between its parent and its children. For
example, among the neighbours of q, the parent is p and the children are x, y and z.

Why is this representation convenient? Suppose we erased an edge, for example, the edge (p, q),
which is dashed in the picture above. Then we can verify that the answer is escaped for the
vertices outside the subtree of q, and something else for the vertices inside the subtree of q. It
is easy to confirm that this holds for any query (I,R) — the answer is escaped if and only if R
does not lie in the “lower vertex” of the edge I.

In this subtask, this is enough! If we can’t escape the valley, the vertex R is itself a shop
vertex. Therefore the answer to each query is either 0 or escaped. Now we only need a way to
quickly tell if one vertex is in a subtree of another. There are various approaches, we describe
a particularly elegant one.

Algorithm 2: A recursive function

Function dfs(u)
print u
for each child v of u do

call dfs(v)
end
print u

end

Consider the function dfs in algorithm 2. It recursively explores the subtree of a vertex, printing
the index of the current vertex upon “entering” and “exiting” that subtree. For example, the
output of running dfs(q) is

q x ä ä ö ö x y y z ü ü z q

Let’s look at the output of dfs(E). It is easy to see that u is in the subtree of v if and only
if the first occurrence of u happens after the first occurrence of v and the last occurrence of u
happens before the last occurrence of v. Indeed, if u is truly in the subtree of v, then “entering”
and “exiting” the vertex u must occur while we are in the subtree of v — between “entering”
and “exiting” v.

After running dfs(E) once, we can answer queries in O(1) time, using this criterion. Running
dfs(E) takes O(N) time, thus the time complexity is O(N + Q).

Subtask 4. (1 ≤ N,Q ≤ 100 000)

We already know how to tell if the answer to a query is escaped. Thus in this section, we only
focus on calculating the answer in the other case. Suppose we have a query (I,R). Let p be the
“lower vertex” of I and suppose R is in the subtree of p. Then we need to calculate the closest
shop vertex to R within the subtree of p.

Let lca(u, v) denote the lowest common ancestor of vertices u and v and distE [u] be the distance
from E to v. We can calculate the array distE [u] like we did in subtask 2. Notice that the
distance between u and v is

distE [u]− distE(lca(u, v)) + distE [v]− distE(lca(u, v)).

Let u be the closest shop vertex to R within the subtree of p. Let’s pretend we don’t know
where u is, but somehow know w = lca(R, u). Then we can calculate the answer to the query

Published under the CC BY-SA 4.0 license 3/5



Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 1
Task: valley

Version: en-1.0

as
distE [R]− 2 distE [w] + min

v
distE [v],

where the minimum is taken over all shop vertices in the subtree of w. We define

magic[w] := −2 distE [w] + min
v

distE [v].

Algorithm 3 provides a dynamic programming solution to calculate the array magic.

Algorithm 3: Calculating magic.

Function buildMagic(u)
for each child v of u do

call buildMagic (v)
end
if u is a shop vertex then

magic[u]← distE [u]
else

magic[u]←∞
end
for each child v of u do

magic[u]← min(magic[u], magic[v])
end

end
call buildMagic (E)
for each vertex u do

magic[u]← magic[u]− 2 distE [u]
end

Calculating distE [R] + magic[w] gives the shortest path from R to a shop, provided that w is
the “uppermost” vertex on the path. The “uppermost” vertex on the path will be on the path
from R to p. Thus, the answer to the query is

distE [R] + min
w

magic[w],

where the minimum is taken over the path from R to p (including both R and p).

Now we only need a way to calculate minw magic[w] quickly. There are many ways to take
minimums over paths on a tree — we describe one which is called “binary lifting”. We initialize
two 2D arrays: jumpVertex and jumpMagic. We want jumpVertex[u][k] to be the 2k-th ancestor
u; that is — the result of moving 2k steps towards E from u. And jumpMagic[u][k] should be the
minimum of magic on the path between u and the jumpVertex[u][k] (including u, but excluding
jumpVertex[u][k]). One can verify that the following relations hold:

jumpVertex[u][0] is the parent of u;

jumpMagic[u][0] = magic[u];

jumpVertex[u][k] = jumpVertex[jumpVertex[u][k − 1]][k − 1];

jumpMagic[u][k] = min(jumpMagic[u][k − 1], jumpMagic[jumpVertex[u][k − 1]][k − 1]).

For example, the 8th ancestor of a vertex is the 4th ancestor of its 4th ancestor. We can use
these equations to initialize the arrays jumpVertex and jumpMagic.

Published under the CC BY-SA 4.0 license 4/5



Baltic Olympiad in Informatics
27 Apr – 2 May, 2019
Tartu, Estonia

Day: 1
Task: valley

Version: en-1.0

How can we use these arrays to take minimum of magic on the path from R to p? We start at R,
then use jumpVertex to jump up as far as possible without passing over p. The corresponding
value of jumpMagic is the minimum of magic over all the vertices we skipped over. We keep
jumping up until we reach p. Algorithm 4 provides the details.

Algorithm 4: Binary lifting

Function buildLifting(u, p) /* p is the parent of u */

jumpVertex[u][0]← p
jumpMagic[u][0]← magic[u]
for k ← 1 to dlog2Ne do

/* jumping dlog2Ne is enough to get us to the root */

jumpVertex[u][k]← jumpVertex[jumpVertex[u][k − 1]][k − 1]
jumpMagic[u][k]← min(jumpMagic[u][k− 1], jumpMagic[jumpVertex[u][k− 1]][k− 1])

end
for each child v of u do

call buildLifting (v, u)
end

end
Function minPath(R, p)

/* calculates the minimum of magic over the path from R to p. */

u← R
answer←∞
for k ← dlog2Ne to 0 do

if jumpVertex[u][k] is in the subtree of p then
answer← min(answer, jumpMagic[u][k])
u← jumpVertex[u][k]

end

end
answer← min(answer, magic[p])
return answer

end

To summarize:

1. we call buildMagic(E) and other auxiliary pre-processing functions;

2. we call buildLifting(E,E) to initialize the binary lifting tables;

3. for each query (I,R), where p is the “lower vertex” of I, answer the query as distE [R] +
minPath(R, p) (or escaped if R is not in the subtree of p).

Steps 1 should not take more than O(N) time. By analyzing the pseudocode we can see that
step 2 takes O(N logN) and step 3 takes up to O(logN) for each query, i.e O(Q logN) in total.
Total complexity is O((N + Q) logN).

Credits

• Task: Lukas Michel (Germany)

• Solutions and tests: Tähvend Uustalu, Andres Unt (Estonia)

Published under the CC BY-SA 4.0 license 5/5


